

Atelier sur : L'APRÈS NAGOYA/CANCUN POUR LES PAYS DE LA ZONE COMIFAC en marge du CCR

(Agro)Forest Carbon Monitoring System

Serge Ngendakumana Chercheur Associé-A&PE (ICRAF-ASB) World agroforestry Centre-ICRAF WCA

Peter Minang, Martin Tchienkoua, Martin Yemefack

Presentation outline

- ASB Historical bacground Research
- Ongoing initiatives to support the RPP process in COMIFAC countries
- Carbon assessment: ASB Methodology overview
- Practicality on (agro)forestry C-Measurement

ASB Historical bacground Research

- ASB partnership is a platform for Research in the Forest tropic margins, hosted by the World Agroforestry Centre in Nairobi
- Other partners in Africa /Cameroon: ICRAF, IITA, IRAD
- 15 years of Research to generate knowledge on Land uses dynamics and C-assessment in Cameroon and other tropical countries such as Peru, Indonesia, Philippines, Vietnam

Ongoing initiatives to support the RPP process in COMIFAC

- Generating knowledge on C-stocks and policy challenges for REDD process
- Capacity Building for national and African partners: Opp cost analysis and Support to UN REDD Negotiators
- Supporting UNFCC /REDD negociation process (case of the Douala worshop : REDD+ after Cancun), 20 african countries

Training National partners on C-assessment methodology, Limbé 10 March 2011

Carbon assessment: ASB Methodology overview

- Please consult reference documents produced by ASB platform and ICRAF
- Several manuals are available on the ASB website (Just google ASB, Alternative for Slash and Burn Partnership):
 - Carbon assessment Manual; ICRAF, 2008
 - Estimating opportunity Cost for REDD +, ASB-WB, 2010

Contribution of Greenhouse Gases to Global Warming GHG emissions by CO₂ Equivalent, 2004 (IPPC)

Carbon cycle

Figure 2. A) Estimates of current emission levels from forest + peat at national scale, B) cumulative total forest C stock (excluding peat) by ranked countries

5. Carbon Measurement Context and practice

- 1. Decide on a classification system for land uses
- 2. Measure the C stock densities of the land use systems
- 3. Measure the changes in area fraction
- 4. Integrating the data to a landscape level C balance

Measuring Carbon in different Pools and Land Uses

C Pools	Measurement Method
Tree biomass	DBH and allometric
Understorey biomass	Destructive sampling
Crop	Literature or destructive
	sampling
Necromass	Non destructive
Litter	Destructive
Soil C	Destructive, density et C
	content

Determine Number of Plots

- Identify the desired precision level, e.g. =/- 10% of the mean value (0.1)
- 2. Identify area where to collect preliminary data for each stratum. About 6-10 plots, plot size determined adequately
- 3. Estimate carbon stock average and standard deviation from preliminary data
- 4. Calculate the required number of plots

Reference: Pearson, Walker, Brown 2005: Sourcebook for Land Use, Land-Use Change and Forestry Projects. BioCF, Winrock International

Equation Elements

t : Sample statistic from the probability t-distribution for a chosen confidence level, e.g. 95%.
Initially, for an unknown sample size: t = 2

For a single-stratum project:

Example: Determine the No. of Plots

$$n = \frac{(N \times s)^2}{\frac{N^2 \times E^2}{t^2} + N \times s^2}$$

Single-stratum project	
Area	= 5,000 ha
Plot size	= 0.08 ha
Mean stock	= 101.6 t C/ha
Standard deviation	= 27.1 t C/ha
${f N}$ (number of possible sample units)	= 5,000/0.08 = 62,500
Desired precision	= 10 %
E (allowable error)	$= 101.6 \ge 0.1 = 10.16$
$n = \frac{(62,500 \times 27)}{\frac{62,500^2 \times 10.1}{2^2}}$	$(1)^2$ $(16^2 + 62,500 \times 27.1^2)$
= 29 plots	Reference: Pearson, Walker, Brown 2005: Sourcebook for Land Use, Land-Use Change and Forestry Projects. BioCF, Winrock International

Current work in ASB Benchmarks in Cameroon

- ICRAF: Homegardens : 96 Plots (5 sites:)
- IITA: Cocoa Agroforests systems: 76 plots
- IRAD: Natural Forest and Peatlands: 64 Plots
 The same methodology is applied globally in Peru, Vietnam and Indonesia

Land uses currently under C assess by ASB teams

Land Use	Area Sampled per / village	Total Sample
Old Growth Forest, open access in the NPFD – (foret villageoise)	2000 m * 4 = 0.8ha	5 ha
Secondary forest corresponding to very old fallows (> 20 years)	2000 m * 4 = 0.8ha	5 ha
Trees fallows: 11-20 years	2000 m * 4 = 0.8ha	5 ha
Bush fallows: 6-10 years	Variable *	Variable * 0.48 – 5ha
Young fallows: 3-5 years	Variable *	Variable * 0.48 – 5ha
Сосоа		20 ha
young (1-7years),	2000 m * 4 = 0.8ha	5 ha
mature (8-15 years),	2000 m * 4 = 0.8ha	5 ha
old (15-30)	2000 m * 4 = 0.8ha	5 ha
very old (> 30 years);	2000 m * 4 = 0.8ha	5 ha

Accounting for C-stock changes from land use sectors

ΔC = Σ	E _{ij} A _{ij}	[ΔC _{ij LB} + Δ	$\Delta C_{ij DOM} + \Delta C_{ij}$	_{SOILS}] / T _{ij}
	LUC	Biomass	Necromass	Soil
<mark>∆C</mark> yr⁻¹		Annual	change in C stocks	in the landscape, ton C
Aij		area of	land use type <i>i</i> that	t change to <i>j,</i> ha
∆Cij LB		Change in C stoc use typ	cks in living biomas be <i>i</i> to <i>j</i> , tons C ha ⁻¹	s from changes of land
∆Cij DOM		Change in C stoc of land	cks in dead organic use type <i>i</i> to <i>j ,</i> ton	matter from changes C ha ⁻¹
∆Cij SOILS	Change	in C stocks in so to <i>j,</i>	bils from changes of ton C ha ⁻¹	f land use type <i>i</i>
Тіј		Period	of the transition fro	om land use type <i>i</i> to land
use type				
		<i>j,</i> yr		

Accounting for C-stock changes from land use sectors

Undisturbed forest
Log over forest-high density
Log over forest-low density
Undisturbed swamp forest
Log over swamp forest
Undisturbed mangrove
Log over mangrove
Natural regrowth-shrub

Accounting for C-stock changes from land use sectors

 $\Delta C = \sum_{ij} A_{ij} \left[\Delta C_{ij LB} + \Delta C_{ij DOM} + \Delta C_{j OILS} \right] / T_{ij}$

Modelling

Plot level measurement

Measurement of C stock of

Biomass

Soil

Equipments needed

- -Measuring Tapes (5m, 50m
- Clinometer
- Sampling bags
- Etc

Nested Plot Design for Sampling

Bigger sub-plot 100 mx 20 m

Trees with dbh>30 cm (girth 95 cm) inside bigger sub-plot

Trees with dbh in a range of 5 - 30 cm inside 5m x 40m sub-plot

Trees with dbh < 5 cm (girth < 15cm) inside 0.5 x 0.5 m sub-plot

Understorey and litter layer sample plot

Important parameters for aboveground tree biomass

- **1.** Tree trunk diameter
- 2. Wood specific gravity
- 3. Total height
- 4. Forest type (dry, moist or wet)

$AGB = \rho D^2H \dots kg/tree$

Chave et al. (2005)

Estimation of tree biomass

(Chave et al., 2005)

- Branching pattern
- Diameter at breast height (dbh at 1.3 m)
- Wood density
 - Light (< 0.6 Mg m⁻³)
 - Medium (0.6 0.75 Mg m⁻³),
 - Heavy (0.75 0.9 Mg m⁻³)
 - Very heavy (> 0.9 Mg m⁻³) (*Anonymous, 1981*)

Relation of tree size to carbon stocks

Stem diameter DBH (cm)	Biomass DM per tree (Mg)	No. of tree per hectare	Carbon per ha (Mg/ha)	Carbon (%)
10	0.13	900	53	19
30	2.25	70	71	24
50	8.50	20	76	26
70	20	10	90	31
Total	-	1000	290	100

Rainfall, mm/yr	Allometric	Diameter , cm	No tree	R ²
Dry (<1500)	W = 0.139 D^{2.32} (Brown, 1997)	5-40	28	0.89
Moist (1500- 4000)	W = 0.118 D ^{2.53} (Brown, 1997) W = 0.049 D ² H (Brown et al., 1995) W = 0.11 ρ D ^{2+c} (c=0.62) (Ketterings et al., 2001)	5-148	170	0.90
Wet (>4000)	W = 0.037 D^{1.89} H (Brown, 1997)	4-112	160	0.90
W = Tree Bioma	ass, kg/tree; D=dbh, cm; ρ =	= wood dens	ity, g cm∹	3

Biomass equations for 'woody' species

Vegetation	Equations	R ²
Coffee (Arifin, 2001)	$W = 0.2811 D^{2.0635}$	0.9455
Banana (Arifin, 2001)	W= 0.0303 D ^{2.1345}	0.9887
Bamboo (Priyadarsini,1998)	W= 0.1312 D ^{2.2784}	0.9541
Paraserianthes (Sugiarto, 2001)	W= 0.0272 D ^{2.831}	0.8161
Tea (<i>Camelia sinensis</i>) (Hariyadi, 2005)	$W = 0.1594 D^{1.1517}$	
Pinus (Waterloo, 1995)	$W = 0.0417 D^{2.6576}$	0.9085

Measuring tree diameter at plot level for estimating C stock

Table for total biomass of trees > 5 cm DBH

No	Local/Scien tific name	Branched? Y/N	G	D	Н	ρ*)	Biomass, kg/tree**)	Note
1								
2								
3								
4								
100								
		ТС	TAL ⁻	TREE	BION	IASS		
Note : G=girth, cm, D = dbh= G/ π , cm where π =3.14 ; H= tree height, cm, ρ =								

Wood density, g cm⁻³

*)Estimated wood density: High, Medium, Low (0.6, 0.4, 0.2 g cm⁻³)

**) Estimate AGB using specific allometric equation for tree growing in the tropical forest, and for trees growing in the agroforestry and plantation system

$C \operatorname{stock} = DW (kg) \times \operatorname{total} C (0.46)$

No.	Total FW	Sub- sample	Sub- sample	Total D' litte	W fine er	Total C, %	Total C-stock, ton/ha
	(kg)	FW (g)	DW (g)	kg/0.25 m ²	kg/m ²		
1							
2							
3							
4							
5							
6							
			-	Total DW			
				Avg. DW			

C stocks of Tree Root System

- Default values for the shoot/root ratio (SR-ratio) are
 4:1 for <u>humid tropical</u> forest on normal upland soils
- up to 10:1 on continuously wet sites
- around 1:1 at very low soil fertility, long dry seasons

Estimation of Necromass: Laying trees

NECROMASS: Undisturbed sampling

Destructive sampling: understorey and litter

40 m

Sample handling: Separating roots and soil

Estimation of total C stock in soil

Example of C calculation in soils

 C stock (ton/ha) = f(depth of the soil layer, bulk density and C concentration)

Estimation of Total C stock per plot

LUS	Rep	Tree*) ton/ha	Underst orey ton/ha	Litter ton/ha	Root**) ton/ha	Soil 0-5 cm ton/ha	Soil 5-15 cm ton/ha	Total C-stock ton/ha
		1	2	3	4	5	6	1+2+3+4 +5+6
	1							
	2							
	3							
	4							
	5							
	6							
								Σ

Problems in C measurement

- Difficulties working in long fallow vegetation and secondary forest
- Determination of effective survey area
- Selection of different sampling plots
- etc

Carbon stocks of different LUS

Land use system (LUS)	C stock time- averaged (tC/ha)	CO ₂ stock time- averaged (tCO ₂ /ha)
Natural forest	250	918
Logged forest	200	734
Heavily logged forest	120	440
Agroforest 1	80	294
Agroforest 2	60	220
Сосоа	50	184
Oil palm plantations	41	150
Improved pastures	5	18
Low-productivity pastures	2	7
Agriculture 8yr fallow	15	55
Agriculture 3yr fallow	5	18

Sources: Palm, et al. 2004; White, et al. 2005.

Land use systems targeted by ASB in Cameroon

Land Use	Area Sampled per / village	Total Sample
Old Growth Forest, open access in the NPFD – (foret villageoise)	2000 m * 4 = 0.8ha	5 ha
Secondary forest corresponding to very old fallows (> 20 years)	2000 m * 4 = 0.8ha	5 ha
Trees fallows: 11-20 years	2000 m * 4 = 0.8ha	5 ha
Bush fallows: 6-10 years	Variable *	Variable * 0.48 – 5ha
Young fallows: 3-5 years	Variable *	Variable * 0.48 – 5ha
Сосоа		20 ha
young (1-7years),	2000 m * 4 = 0.8ha	5 ha
mature (8-15 years),	2000 m * 4 = 0.8ha	5 ha
old (15-30)	2000 m * 4 = 0.8ha	5 ha
very old (> 30 years);	2000 m * 4 = 0.8ha	5 ha

ASBResearch Perspectives in Africa for the COP 17 in Durban 2011

• ASB-REALU Project:

- 1. Participatory development of country level REALU-REDD readiness framework including non forest sectors for addressing deforestation
- Review and update of landscape REDD+/REALU data on Land uses and rights (also in links with RRI funds)
- 3. Assess institutional structure and governance for REDD+
- 4. Review land use options (existing and new) to project their impact on ES
- 5. Assess drivers of deforestation in target sites
- 6. Testing PES mechanisms in West and central Africa

Our partners

We acknowledge with thanks the collaboration of: Donors

- Norwegian Government through NORAD
- American Goverment
- The EU and IFAD
- RRG

Technical and institutional

COMIFAC, CBFP, CG Centers, Universities, NARS, NGOs and CBOS

